
Working	with	images	and	scenes

CS	5010	Program	Design	Paradigms	
“Bootcamp”
Lesson	2.5

1
©	Mitchell	Wand,	2012-2014
This	work	is	licensed	under	a	Creative Commons Attribution-NonCommercial 4.0 International License.

Introduction

• Racket	has	a	rich	library	for	working	with	
images	and	scenes.

• We	will	use	this	library	extensively	in	this	
course.

• In	this	lesson,	we	will	explore	a	few	things	
from	the	library.

• Note:	this	lesson	is	mostly	review	from	Lesson	
0.4

2

Learning	Objectives

• At	the	end	of	this	lesson,	the	student	should	
be	able	to:
– Create	simple	images	and	scenes
– Combine	simple	images	into	more	complex	
images	and	scenes

– Determine	the	properties	of	an	image
– Test	images	and	their	properties

3

Images	are	Scalar	Data

• In	Racket,	images	are	scalar	data
• Racket	has:
– Functions	for	creating	images
– Functions	for	combining	images
– Functions	for	finding	properties	of	images

• In	general,	we	build	complex	images	by	
starting	with	simple	images	and	then	
combining	them	using	functions.

4

Loading	the	image	library

To	load	the	image	library,	include	the	line
(require 2htdp/image)

in	your	program.

5

Functions	for	Creating	Images	(1)

bitmap : String -> Image
GIVEN:	the	name	of	a	file	containing	an	image	in	
.png or	.jpg	format
RETURNS:	the	same	image	as	a	Racket	value.

6

Functions	for	Creating	Images	(2)

rectangle :
Width Height Mode Color -> Image

GIVEN:	a	width	and	height	(in	pixels),	a	mode	
(either	the	string	“solid”	or	the	string	“outline”),	
and	a	color
RETURNS:	an	image	of	that	rectangle.
[See	the	Help	Desk	for	information	on	the	
representation	of	colors	in	Racket].

7

Functions	for	Creating	Images	(3)

circle : Radius Mode Color -> Image
Like	rectangle,	but	takes	a	radius	instead	of	a	
width	and	height.

There	are	lots	of	other	functions	for	creating	
shapes,	like	ellipse,	triangle,	star,	etc.

8

Functions	for	Creating	Images	(4)

text
: String Fontsize Color -> Image

RETURNS:	an	image	of	the	given	text	at	the	
given	font	size	and	color.

9

Combining	Images

• The	image	library	contains	many	functions	for	
combining	images	into	larger	images.

• These	functions	generally	align	the	images	on	
their	centers.		This	is	usually	what	you	want.		If	
you	really	want	to	align	images	on	their	edges,	
there	are	functions	in	the	library	to	do	that,	too.		
See	the	help	desk,	as	usual.

• Let’s	look	at	the	two	most	commonly-used	image	
combining-functions:		beside and	above.	Here’s	
an	example:

10

beside	and	above

11

Slightly	more	complicated	images

12

Slightly	more	complicated	images

13

The	rectangle	has	width	0,	so	it's	invisible	J

Scenes

• A	scene is	an	image	that	has	a	coordinate	
system.		

• In	a	scene,	the	origin	(0,0)	is	in	the	top	left	
corner.		The	x-coordinate	increases	as	we	
move	to	the	right.	The	y-coordinate	increases	
as	we	move	down.		These	are	sometimes	
called	“computer-graphics	coordinates”

• We	use	a	scene	when	we	need	to	combine	
images	by	placing	them	at	specific	locations.

14

Scene	Coordinates

15

(0,0) x

y

Creating	Scenes

• (empty-scene width height)
– returns	an	empty	scene	with	the	given	
dimensions.

• (place-image img x y s)
– returns	a	scene	just	like	s,	except	that	image	img
is	placed	with	its	center	at		position	(x,y) in	s

– resulting	image	is	cropped	to	the	dimensions	of	s.

16

scene+line

• (scene+line s x1 y1 x2 y2 color)
– returns	a	scene	just	like	the	original	s,	but	with	a	
line	drawn	from	(x1,y1) to	(x2,y2) in	the	
given	color.

– the	resulting	scene	is	cropped	to	the	dimensions	
of	s.

17

Creating	Scenes	with	Functions	
Composition

• Create	scenes	with	images	in	them	by	
combining	them	with	functions.

• Start	with	an	empty-scene,	then	paint	images	
and	lines	on	the	scene	by	using	place-image
and	scene+line.

• This	is	all	functional:	painting	an	image	on	a	
scene	doesn’t	change	the	scene– it	produces	a	
new	scene.

18

Video	Demonstration

19YouTube	link

Measuring	Images

• Racket	also	provides	functions	for	determining	
image	properties.		Here	the	most	important	
ones:
– image-width : Image -> NonNegInt
– image-height : Image -> NonNegInt
– image? : Any -> Boolean

20

In	pixels

Bounding	Box

• The	bounding	box of	an	image	is	the	smallest	
rectangle	that	completely	encloses	the	image.

• Its	width	will	be	the	image-width	of	the	image,	
and	its	height	will	be	the	image-height	of	the	
image.			

• It	is	easy	to	determine	whether	an	arbitrary	
point	is	inside	the	bounding	box– let’s	look	at	
an	example.		

21

Bounding	Box	Example

22

w = (image-width CAT-IMAGE)

h =
(image-height CAT-IMAGE)

(x0,y0)

(x,y)	is	inside the	rectangle	iff
(x0-w/2)	≤	x	≤	(x0	+	w/2)

and		(y0-h/2)	≤	y	≤	(y0+h/2)

y	=	y0-h/2

y	=	y0+h/2

x	=	x0-w/2 x	=	x0+w/2

Images	and	the	Design	Recipe:	
Examples

• In	your	examples,	describe	the	image	in	
words.

• EXAMPLE:	Consider	a	function	that	takes	an	
image	and	doubles	it.	

• In	your	examples	you	could	write:
(define red-circle1
(circle 20 "solid" "red"))

;; (double-image red-circle1)
;; = two red circles, side-by-side

23

Images	and	the	Design	Recipe:	Tests	
(1)

• First,	construct	the	correct	image.	Do	NOT	use	
the	function	you	are	testing	to	construct	the	
image.

• EXAMPLE:
(define two-red-circles
(beside red-circle1 red-circle1))

• Check	it	visually	to	see	that	it's	correct	
– Alas,	this	step	is	not	automatable.

24

Images	and	the	Design	Recipe:	Tests	
(2)

• Then	you	can	use	check-equal? on	the	
resulting	images:
(check-equal?

(double-image red-circle1)
two-red-circles)

• This	looks	a	little	silly	now,	but	it	will	be	
helpful	when	you	build	more	complicated	
images.

25

Images	and	the	Design	Recipe:	Tests	
(3)

• check-equal? is	fairly	clever,	but	not	perfect.
• Which	of	the	images	below	are	visually	equal?
• See	which	of	them	check-equal? accepts	as	
equal.

(define vspace1 (rectangle 0 50 "solid" "black"))
(define vspace2 (rectangle 0 50 "solid" "white"))
(define vspace3 (rectangle 0 50 "solid" "red"))
(define vspace4 (rectangle 0 50 "outline" "black"))
(define vspace5 (rectangle 0 50 "outline" "white"))

26

Summary

• Images	are	ordinary	scalar	values
• Create	and	combine	them	using	functions
• Scenes	are	a	kind	of	image
– create	with	empty-scene
– build	with	place-image

• 2htdp/image has	lots	of	functions	for	doing	all	
this.
– Go	look	at	the	help	docs

27

Next	Steps

• If	you	have	questions	or	comments	about	this	
lesson,	post	them	on	the	discussion	board.

28

